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Abstract

Over the last decade and a half, tabu search algorithms for machine schedul-
ing have gained a near-mythical reputation by consistently equaling or establishing
state-of-the-art performance levels on a range of academic and real-world problems.
Yet, despite these successes, remarkably little research has been devoted to devel-
oping an understanding of why tabu search is so effective on this problem class. In
this paper, we report results that provide significant progress in this direction. We
consider Nowicki and Smutnicki’s i-TSAB tabu search algorithm, which represents
the current state-of-the-art for the makespan-minimization form of the classical job-
shop scheduling problem. Via a series of controlled experiments, we identify those
components of i-TSAB that enable it to achieve state-of-the-art performance levels.
In doing so, we expose a number of misconceptions regarding the behavior and/or
benefits of tabu search and other local search metaheuristics for the job-shop prob-
lem. Our results also serve to focus future research, by identifying those specific
directions that are most likely to yield further improvements in performance.
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1 Introduction and Motivation

Over the last 10 to 15 years, tabu search has emerged as a dominant algorith-
mic approach for locating high-quality solutions to a wide range of machine
scheduling problems [1]. In the case of the classical job-shop and permutation
flow-shop scheduling problems, tabu search algorithms have consistently pro-
vided state-of-the-art performance since 1993, currently by a significant mar-
gin over the competition [2,3]. However, researchers have only recently begun
to analyze the underlying causes for the superior performance of tabu search
on these problems [4,5] and many fundamental questions remain unanswered.

We consider the well-known n x m static job-shop scheduling problem or JSP
[6] with the makespan minimization objective; we assume familiarity with the
associated concepts and terminology. The current state-of-the-art approxima-
tion algorithm for the JSP is Nowicki and Smutnicki’s i-TSAB tabu search
algorithm [7], which is an extension of their earlier landmark TSAB algorithm
[8]. In addition to the short-term memory mechanism found in all implementa-
tions of tabu search, --TSAB is characterized by the following algorithmic com-
ponents: (1) the highly restrictive N5 move operator, ® (2) re-intensification of
search around previously encountered high-quality solutions, and (3) diversifi-
cation of search via path relinking between high-quality solutions. Despite its
effectiveness, almost nothing is known about how both these and various sec-
ondary components interact to achieve state-of-the-art performance, or even
if all of the components are necessary. Thus, our primary goal in this paper is
to determine those components of i-TSAB that are integral to its remarkable
performance, and the degree to which they share the responsibility.

Our methodological approach is to first analyze a simple version of tabu search
based on the N5 operator, and then gradually extend the analysis to more
complex variants that share additional key features with --TSAB. We begin
by demonstrating that the “core” tabu search metaheuristic (i.e., lacking long-
term memory) does not provide any distinct advantage over other metaheuris-
tics for the JSP based on the N5 operator. In particular, both iterated local
search and Monte Carlo sampling provide competitive performance. Next, we
show that intensification and diversification can significantly improve the per-
formance of both tabu search and the other metaheuristics we consider, such
that the resulting performance is consistently competitive with i-TSAB. Fi-
nally, we analyze the relative impact of intensification and diversification on
the performance of tabu search algorithms for the JSP. Here, we find that
although application of either mechanism in isolation can lead to performance
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improvements, their mutual effect is multiplicative: both components are re-
quired to achieve state-of-the-art performance.

The remainder of this paper is organized as follows. We begin in Section 2
with an overview of the TSAB and i-TSAB tabu search algorithms for the
JSP. Following a discussion of the implications of the N5 move operator for
metaheuristic design, we introduce novel tabu search, iterated local search,
and Monte Carlo metaheuristics for the JSP. The relative performance of
these metaheuristics is then analyzed in Section 4. A general framework for
augmenting these metaheuristics with long-term memory is detailed in Sec-
tion 5; the impact of such memory is analyzed in Section 6. We conclude in
Section 7 with an analysis of the trade-offs between intensification and diver-
sification on the performance of tabu search, and subsequently summarize our
contributions in Section 8.

2 TSAB and -TSAB: Algorithm Descriptions

Taillard introduced the first tabu search algorithm for the JSP in 1989 [9].
Taillard’s algorithm represented a remarkable combination of simplicity and
effectiveness, and spurred a wave of successor algorithms, e.g., see [10] and
[11]. A significant breakthrough occurred in 1993 when Nowicki and Smutnicki
developed their TSAB tabu search algorithm [8], which represented a major
advance in both speed and effectiveness. TSAB is perhaps best known for its
ability to locate an optimal solution to Fisher and Thompson’s [12] infamous
10 x 10 instance in less than 30 seconds on a now-primitive hardware platform.

TSAB is a relatively a straightforward implementation of tabu search, with
two key exceptions. First, TSAB is based on the powerful N5 move operator,
enabling it to focus on a very small subset of feasible neighbors at each iter-
ation. Second, TSAB is equipped with a long-term memory that is used to
periodically intensify search around previously encountered high-quality so-
lutions. Starting from a solution obtained with Werner and Winkler’s greedy
insertion heuristic [13], TSAB executes a core tabu search procedure and tracks
the IV best or “elite” solutions encountered. If a pre-specified number of iter-
ations pass without an improvement in the best-so-far solution, TSAB then
re-initiates the core tabu search procedure from one of the elite solutions.

TSAB imposes a limit on the number of intensifications performed for each
elite solution e and always selects the best elite solution that is under the
imposed limit; the algorithm terminates once all possible intensifications have
been exhausted. TSAB uses a fixed tabu tenure, and employs a mechanism
to detect the associated cyclic search behavior [1]. When a cycle is detected,
TSAB immediately performs intensification around an elite solution.



Building on their initial success, Nowicki and Smutnicki introduced an en-
hanced version of TSAB in 2001 [14]. The algorithm, denoted -TSAB, cur-
rently represents the state-of-the-art in approximation algorithms for the JSP
and outperforms all competitors by a significant margin [7]. Search in i-TSAB
proceeds sequentially in two phases. In the initiation phase, i-TSAB uses
TSAB to construct a set or pool of n elite solutions E. Let E; denote the so-
lution obtained by Werner and Winkler’s heuristic. The first elite solution E} is
generated by applying TSAB to Ey. Subsequent elite solutions F;, 2 < i < E,,,
are generated by applying TSAB to a solution ¢ obtained via a simple path
relinking procedure [15] between FE;_; and Ej.

Next, i-TSAB enters the proper work phase. Let E* denote the solution with
the lowest makespan in E, and let E* denote the solution that is maximally
distant in terms of disjunctive graph distance from E*. A path relinking pro-
cedure, NIS, is used to generate a solution ¢ that is “roughly” equi-distant
(see [7] for an explanation) from both E* and E*. TSAB is applied to ¢,
yielding ¢, which then unconditionally replaces the solution E* in E. The
process iterates until the distance between E* and E* drops below a pre-
specified threshold. The design of i-TSAB is predicated on the existence of a
“big-valley” distribution of local optima, for which there is reasonably strong
empirical evidence in the JSP [14].

In contrast to most metaheuristics for the JSP — including many implementa-
tions of tabu search - both TSAB and -TSAB are largely deterministic. The
only possible? sources of randomness involve tie-breaking at specific points
during search, e.g., when multiple equally good non-tabu moves are available.
For our purposes, such strong determinism complicates cross-comparisons of
the performance of --TSAB and TSAB with that of inherently stochastic algo-
rithms. Specifically, it is unclear whether it is reasonable to compare the results
of --TSAB with the mean or median performance of a competing stochastic
algorithm, or if some more principled statistic is more appropriate, if available.

3 The N5 Operator: Moving Beyond Tabu Search

The canonical local search neighborhood for the JSP is van Laarhoven et al.’s
N1 move operator [16]. The neighborhood of a solution under the N1 operator
consists of the set of solutions obtained by inverting the order of a pair of adja-
cent operations in a critical block. Many of the moves induced by N1 operator
— specifically those involving operation pairs residing completely within a criti-
cal block — cannot yield an immediate improvement in solution makespan [17].

4 Tt is unclear from their descriptions whether Nowicki and Smutnicki’s implemen-
tations of TSAB and i-TSAB actually use such random tie-breaking.



Nowicki and Smutnicki [8] further refine this observation by identifying two
additional operation pairs whose inversion cannot reduce solution makespan:
the first (respectively last) pair of operations in the critical block of machine
1 (respectively machine m), subject to restriction that the critical block size
is greater than 2. These observations form the basis of the highly restrictive
N5 move operator, introduced in conjunction with the TSAB algorithm.

The N5 operator enables TSAB to ignore a large number of provably non-
improving moves, thereby significantly reducing the per-iteration run-time cost
relative to tabu search algorithms based on the N1 operator, e.g., see [18] and
[11]. Intuition suggests that the N5 operator might also significantly improve
the performance of other metaheuristics for the JSP, such as simulated anneal-
ing [16] and iterated local search [19]. Yet, to date the N5 operator has rarely
been used in conjunction with metaheuristics other than tabu search (see [20]
for an exception), such that this intuition remains largely unconfirmed.

The lack of broad-based studies assessing the performance of N5-based meta-
heuristics leads us to our first question regarding the effectiveness i-TSAB: Is
it necessary to employ tabu search to achieve state-of-the-art performance?
We differentiate between the long-term and short-term memory mechanisms
found in tabu search, and define “core” tabu search as a tabu search lacking
any long-term memory mechanism other than a simple aspiration criterion.
The primary purpose of short-term memory is to guide search out of local
optima [1]. By definition, all other local search metaheuristics have mecha-
nisms to accomplish the same objective. Temporarily ignoring the issue of the
effectiveness of the escape mechanism, there is then no a priori reason that we
cannot substitute another metaheuristic for the core tabu search mechanism
used by i-TSAB. However, in order to answer this question, it is first necessary
— given the lack of previously published algorithms — to introduce one or more
additional N5-based metaheuristics for the JSP.

3.1 Implications of N5 for Metaheuristic Design

The ability of the N5 operator to ignore provably non-improving neighbors
comes with a price: the induced search space is disconnected, such that there
does not always exist a path from an arbitrary solution to an optimal solution.
Thus, no metaheuristic based strictly on the N5 operator can guarantee that
an optimal solution will eventually be located, independent of the run-time.
Despite the obvious drawback, the implications of this fact for metaheuristic
design are poorly understood.

In preliminary experimentation with the N5-based metaheuristics introduced
below, we observed that search invariably became restricted to a small cluster



of solutions S; in no case did we observe |S| > 10. The topology of these
clusters is such that they form a sub-graph that is isolated from the rest of
the search space, i.e., once search enters the sub-graph, it can never escape.
For example, consider a solution s with a single critical block of size > 2
residing on machine 1, such that |N5(s)| = 1; the sole neighbor s is obtained
by inverting the order of the last pair of operations (o;,0;) in the critical
block. Let C,a:(s) denote the makespan of a solution s and suppose that (1)
Craz(8) = Craa(s’) and (2) s also contains a single critical block of size > 2
— on machine 1 — with (o0;,0;) serving as the last two operations. Once any
N5-based metaheuristic encounters either s or ', search will forever cycle. We
refer to such isolated clusters of solutions as traps. Although it may appear
contrived, this example and related generalizations are frequently observed in
the benchmark instances we consider in Sections 4 through 7.

Given the induced traps, N5-based metaheuristics must be able to (1) detect
when search is restricted to a trap and (2) initiate some form of escape mecha-
nism once a trap is detected. TSAB detects traps via an explicit cycle checking
mechanism. When a cycle is detected, search is immediately re-initiated from
an elite solution, if available. While satisfying the aforementioned criteria, this
approach entangles the concepts of trap detection and escape with the long-
term memory mechanism of intensification — ultimately making it impossible
to control for the effect of long-term memory on algorithm performance. To
achieve effective experimental control, we consider an alternative approach to
detecting and escaping from traps.

To detect a trap, we monitor the mobility of search over time. Mobility [21]
is defined as the distance between two solutions visited some k number of
iterations apart. We define the distance between two solutions as the well-
known disjunctive graph distance for the JSP [22]. The metaheuristics we
introduce below generally maintain high search mobility over a wide range of
parameter settings. Consequently, if mobility falls below some relatively small
threshold, then search is likely contained in a trap, and an escape sequence can
be initiated. Instead of re-starting search from some previously encountered
elite solution, we instead use the NI operator to apply a small perturbation
to the current solution. Because the N1 operator induces a connected search
space, the mechanism is able to remain nearby the current solution while
simultaneously moving search out of the trap.

3.2 The CMF Framework

The metaheuristics introduced in Sections 3.4 through 3.6 are expressed in
terms of a framework that implements the trap detection and escape mech-
anisms and other common algorithmic features. The framework is denoted



function CMF<Metaheuristic T>

param MaxIters // search duration

param MTCI // mobility trap check interval
param My, . // mobility threshold

param MWLnom // nominal mobility walk length
param MWL, . // mobility walk length increment
s = genRandomLocalOptimum()

s* =s

lastMTCISol=s
declare verifyTrapEscape = false
declare MWL¢yr = 0
T.initialize()
for i = 1 to MaxIters do
declare generateTrapEscape = false
if i mod MTCI then
declare mobility = distance(s,lastMTCISol)
if (verifyTrapEscape == true) and (mobility > My,..) then
verify TrapEscape=false
else if (verifyTrapEscape == true) and (mobility < My,,..) then
MWLcyr = MWLcur + MWL, .
generateTrapEscape = true
else if (verifyTrapEscape == false) and (mobility < Myp,..) then
MWLcur = MWLnpom
generateTrapEscape = true
verify TrapEscape = true
lastMTCISol = s

if generateTrapEscape == true then
s = randomWalk(s,N1,[MWLc¢ur])
else

s = T.nextSolution(s)
if Cmax(S) < Cmaq;(s*) then
s*=s

return s*

Fig. 1. Pseudo-code for the Core Metaheuristics Framework (CMF).

CMF for Core Metaheuristic Framework; pseudo-code is provided in Fig-
ure 1. CMF assumes the availability of a metaheuristic T, with an interface
that implicitly supports both initialization (the initialize method) and exe-
cution of individual iterations (the nextSolution method). Search begins from
a random local optimum, which we obtain by applying steepest-descent to
a random semi-active solution; the latter is constructed using the procedure
described in [20]. At the highest level, CMF simply executes Maxlters itera-
tions of the metaheuristic T and returns the best overall solution. To facilitate
trap detection, CMF monitors the mobility of search every MTCI iterations. If
the mobility is not greater than some minimal mobility threshold My, then
CMF performs a random walk under N1 of length MWL,,,,, from the current
solution; otherwise, T is used to select a neighbor of the current solution s.
If the mobility is still not super-threshold after another MTCI iterations, the
random walk length is increased by a factor of MWL,,., and another random
walk is performed. The process continues, with monotonically increasing walk
lengths, until mobility is super-threshold. We note that a similar adaptive
process is embodied in reactive tabu search metaheuristic [21].



3.3 Computation of Neighboring Solution Makespans

Independent of move operator, the run-time of local search metaheuristics
for the JSP is typically dominated by the cost of computing the makespans
of neighboring solutions at each iteration of search. To perform these com-
putations, we implement a set of remarkably efficient and highly specialized
techniques introduced by Nowicki and Smutnicki. Due to their complexity, we
do not detail these algorithms here; rather, we refer the reader to [7].

3.4 The Baseline: Simple Tabu Search

The baseline algorithm in our analysis is a simple N5-based tabu search meta-
heuristic for the JSP, which we denote by STS for Simple Tabu Search. As
in TSAB, the short-term memory in STS stores the TT,,. most recently
swapped pairs of critical operations, enabling STS to escape from local op-
tima by preventing the original order of these operation pairs from being
quickly re-established. Following Taillard [18], the tabu list size TT.,, in STS
is dynamically updated every TUI iterations by sampling uniformly from the
interval [TT,n, TT ez All other features of STS are borrowed from TSAB,
with the exception of the cycle detection mechanism and the initial solution;
in STS, search is initiated from a random local optimum supplied by CMF.

3.5 [Iterated Local Search and the N5 Operator

The second novel N5-based metaheuristic we introduce is based on iterated
local search, or ILS [23]. ILS has been successfully applied to a wide range
of NP-hard problems, achieving state-of-the-art performance in a number of
cases. In contrast to other well-known metaheuristics for local search, ILS uses
two move operators: a small-step operator N, and a large-step operator N;.
Typically, greedy descent with respect to N; is used to transform an initial
solution s into a local optimum s’. The N; operator is then used to generate a
perturbation s” of s'; greedy descent is subsequently applied to s” (i.e., with s”
serving as s in the next iteration), and the process repeats. Ideally, N; moves
are large enough to yield s” such that when greedy descent is applied to s”,
the result is a new local optimum s* # s'.

To date, only Lourenco has introduced implementations of ILS for the JSP
[24,19], although Jain [25] used the notion of a large-step operator in a complex
multi-level search framework for the JSP. Despite promising initial results,
Lourenco’s algorithms in particular and ILS algorithms for the JSP in general
have received little attention from the broader research community.



In ILS, the strength of the perturbations required by the N, operator is a
function of attractor basin strength in the problem under consideration. In
the JSP, attractor basins of local optima are surprisingly weak; Watson [26]
shows that the local optima of random JSP instances can be escaped with
high probability simply by accepting one or two dis-improving moves and re-
initiating greedy descent. This result provides a straightforward operational
definition for an NV; operator, which in turn forms the basis for a new N5-based
ILS metaheuristic for the JSP. The resulting metaheuristic is denoted IJAR,
for Iterated Jump And Redescend.

Search in IJAR proceeds via a sequence of iterations, starting from a ran-
dom local optimum supplied by CMF. In a typical iteration, IJAR accepts
a random sequence of at most k& monotonically dis-improving neighbors from
the current solution s, where k is a user-specified parameter. The “at most”
qualifier is required to handle rare circumstances in which it is not possible
to accept k dis-improving moves from a local optimum, e.g., when the opti-
mum is both locally minimal and maximal. Randomized next-descent is then
used to transform the resulting solution s’ into a local optimum s”, which
then serves as the s in the next iteration. If search consistently locates new
local optima, IJAR continues to perform nominal iterations. However, in prac-
tice IJAR occasionally encounters local optima for which the ascent-descent
mechanism either cannot guarantee escape or does so with only very low prob-
ability. Consequently, IJAR is equipped with mechanisms to both detect these
situations and initiate an appropriate recovery.

To detect search stagnation, IJAR analyzes the makespan of solutions gen-
erated OTCI (Optima Trap Check Interval) iterations apart. Let s and s~
respectively denote the current solution and the solution observed OTCI iter-
ations prior. If C,4.(8) = Chaz(s™), search is likely either permanently trapped
in a local optimum or has a very low probability of escape. In this case, IJAR
enters an optimum escape mode or OEM. While in OEM, random walks —
with respect to the N5 operator — of monotonically increasingly length are
substituted for the usual ascent-descent process. The initial length and growth
rate of the random walk are respectively determined by the OWEL,,,, and
OWEL,,. parameters, respectively. A fully detailed description of IJAR, in-
cluding pseudo-code, is provided in [26]. We conclude by observing that al-
though IJAR is strictly a variant of ILS, it also exhibits strong similarities
to Hansen and Jaumard’s steepest-ascent/mildest-descent metaheuristic [27].
Further details regarding the design and development of IJAR are reported in
26].



3.6 Monte Carlo Sampling and the N5 Operator

The third novel N5-based metaheuristic we introduce is based on Monte Carlo
or Metropolis sampling, which serves as the basis of the well-known simulated
annealing metaheuristic [28]; run temperatures (see below) are fixed in Monte
Carlo sampling, while they are variable in simulated annealing. Most compu-
tational comparisons of metaheuristics for the JSP conclude that simulated
annealing is not competitive with tabu search [29,30]. Specifically, although
simulated annealing is capable of locating high-quality solutions, tabu search
can generally locate equally good solutions in far lower run-times. However,
we hypothesize that it may be possible to exploit the relative weakness of
local optima attractor basins in the JSP to develop high-performance meta-
heuristics based on Monte Carlo sampling. In particular, we observe that if
attractor basins are consistently weak (in the specific sense described above
in Section 3.5), simulated annealing is highly inefficient, as search at all but
low temperatures is likely unnecessary. Monte Carlo sampling at a fixed low
temperature may be sufficient to yield effective search.

We denote our Monte Carlo metaheuristic by RMC, for Rejectionless Monte
Carlo. RMC begins from a random local optimum supplied by CMF. In any
given iteration of RMC, the well-known Metropolis [31] acceptance criterion
is applied to each N5 neighbor of the current solution s in turn; the visitation
sequence is randomized. If a neighbor is accepted, the corresponding move
is immediately performed. If none of the neighbors is accepted, then a single
neighbor is accepted according to a weighting scheme defined by the Metropo-
lis acceptance criterion. Let s denote the current solution, and let s’ denote a
neighbor N5(s) of s. We define A = C04(8") — Crnaz($). Under the Metropolis
criterion, the probability P(s’|s) of accepting a move from s to s’ is given as

, e;:FA/LforA>O
P(s,s') =
1/L  for A<O

where L = |N5(s)|. A single neighbor s’ is then accepted according to the
probabilities given by P(s,s’)/ > P(s, sx). This acceptance scheme forms the
basis of rejectionless Monte Carlo sampling [32]. We intentionally avoid a
pure rejectionless acceptance criterion in order to avoid evaluation of the full
neighborhood of s at each iteration of search.

The sole parameter in RMC is the search temperature 7. Instead of directly
specifying T', we use a simple reverse-annealing procedure to determine the
lowest temperature T' for which the proportion of strictly “uphill” (i.e., dis-
improving) moves that are accepted is at least UAG € [0..1]. The procedure
we use was introduced by Yamada et al. [33], although the general idea was
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developed much earlier, e.g., see [34]. In general, UAG is empirically far less
problem-dependent than T'. Fixed values of UAG yield reasonable performance
over a wide range of problem instances, while 7" must be tuned to achieve
similar performance levels. A fully detailed description of RMC, including
pseudo-code, can be found in [26].

4 Experiment 1: The Impact of the Core Metaheuristic

We now quantify both the absolute and relative performance of STS, IJAR,
and RMC on a range of widely studied benchmark instances. Our goal is to
answer two specific research questions: (1) Are other metaheuristics competi-
tive with tabu search on the JSP, or is there an intrinsic advantage to the use
of tabu search as the core metaheuristic in --TSAB? and (2) To what degree do
1-TSAB’s long-term memory mechanisms improve the performance of the core
tabu search metaheuristic? As in Section 3, we define a “core” metaheuristic
as a metaheuristic whose components are strictly dedicated to escaping local
optima, i.e., it lacks long-term memory mechanisms. Both questions have re-
ceived little or no attention in the literature. The question of whether other
metaheuristics can achieve competitive performance is currently open due to
the lack of N5-based alternatives to tabu search. Similarly, reliable perfor-
mance statistics for a core N5-based tabu search algorithm have not been
previously reported; in particular, Nowicki and Smutnicki [7] only contrast
the performance of -TSAB and TSAB.

4.1 Ezxperimental Methodology

We quantify the performance of each algorithm relative to a subset of Taillard’s
benchmark instances for the JSP, specifically those labeled ta01 through ta50
[35]. This subset contains 10 instances of each of the following problem sizes:
15 x 15, 20 x 15, 20 x 20, 30 x 15, and 30 x 20. The optimal makespans are
known for 17 of these 50 instances. However, many of these “solved” instances
are by no means easy, as even state-of-the-art algorithms often have difficulty
consistently locating optimal solutions. Taillard’s 20 x 20 and 30 x 20 instances
are widely regarded as the most difficult random (i.e., as opposed to workflow
or flowshop) JSP benchmarks available. With the exception of ta62, all three
algorithms can quickly locate optimal solutions to Taillard’s larger benchmark
instances. Consequently, we do not consider these instances in our analysis.

Independent of problem size, our implementations of STS, IJAR, and RMC
each devote approximately 98% of the total run-time to computing the make-
spans of neighboring solutions (see Section 3.3). The code for performing such
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Table 1
Run-time cost-per-iteration multipliers for IJAR and RMC relative to STS.
Problem Size
15x15 20x15 20x20 30x15 30x20
IJAR 0.33 0.33 0.31 0.30 0.31
RMC 1.37 1.40 1.41 1.37 1.43

computations is shared by all three algorithms. Consequently, by limiting tri-
als of each algorithm to either a fixed CPU time or a time-equivalent number
of iterations, reasonably fair comparisons can be achieved: any (in)efficiencies
present in our codes are transmitted to all algorithms. Further, most algorith-
mic or implementation enhancements to the routines for computing neigh-
boring solution makespans benefit all local search metaheuristics for the JSP,
albeit not necessarily to the same extent.

We execute 10 independent trials of each algorithm on each of the 50 bench-
mark instances and record the makespan of the best solution located during
each trial. We treat STS as the baseline for comparison, and allocate a to-
tal of 50 million iterations to each trial. Via extensive empirical testing, we
have computed estimates of the per-iteration run-time costs of both IJAR and
RMC relative to STS. The resulting cost-per-iteration multipliers are shown
in Table 1. The data indicate that individual iterations of IJAR are roughly
three times more costly than a single iteration of STS, due to the complexity
of the ascent /re-descent phase. In contrast, iterations of RMC are significantly
cheaper than those of STS, primarily because RMC avoids evaluation of the
entire N5 neighborhood of a solution at each iteration. Via the combination
of cost-per-iteration multipliers and a common experimental platform (see be-
low), individual trials of RMC and IJAR are allocated a number of iterations
that is approximately equivalent in terms of total run-time to 50 million itera-
tions of STS. All code is written in C++ using the Standard Template Library,
and compiled using the GNU gcc 3.3.1 compiler with level 3 optimization. All
trials of our algorithms are executed on 3.0 GHz Pentium IV hardware with
2GB of memory, running Linux 2.4.20-8.

In using cost-per-iteration multipliers, our goal is to allocate equivalent CPU
times to each trial of STS, IJAR, and RMC. We avoid direct time-limited
trials primarily in order to enable replicability [36], as the number of iter-
ations is a platform and implementation-independent performance measure.
We selected the baseline computational cost of 50 million iterations of STS
to enable us to directly contrast our results with those obtained by Nowicki
and Smutnicki [37], who also report the performance of i-TSAB on the same
benchmarks after 50 million iterations. Both STS and -TSAB use the same al-
gorithms to compute the makespans of neighboring solutions, which dominate
the respective run-times. Given identical implementations of these underlying
algorithms, the actual run-times of i-TSAB and STS (and by inference RMC
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and IJAR) would therefore be equivalent.

4.2 Parameter Settings

Values for all algorithmic parameters were selected based on limited experi-
mentation. With the few noted exceptions, we made no exhaustive effort to
determine “optimal” settings; rather, the indicated values yield reasonable per-
formance on the benchmark instances under consideration. The performance
of all our algorithms is somewhat sensitive to the ratio of the mobility trap
check interval MTCI to the mobility threshold M;,,s. For both STS and IJAR,
we let MTCI= 50; for RMC, MTCI= 1000. The value of M, is fixed to 10,
independent of algorithm. In contrast, performance is largely insensitive to
the choice of the nominal walk length MWL,,,, and walk length increment
MWL;,.. Here, we fix MWL,,,, = 5 and MWL;,. = 0.25.

An empirically effective tabu list size for TSAB on Taillard’s benchmarks is 8
[8]. We also found that similar sizes resulted in the best overall performance
of STS. Specifically, we let TT,,;, = 6 and TT,,,, = 10. Performance is far
less sensitive to the choice of update interval; we fix TUI= 15. For IJAR, we
obtained the strongest performance on all benchmark instances using k = 1.
Based on empirical quantification of attractor basin strength in the JSP [26],
we fix OTCI=20, OEWL,,,, = 5, and OEWL;,. = 1. The sole parameter in
RMC is the ratio of uphill-to-accepted moves (UAG), used to compute the
run temperature T. Based on a limited analysis of performance on smaller
problem instances, we found that UAG=0.10 yields good overall performance.

4.3  Results: Qualitative Observations

We contrast the performance of both IJAR and RMC relative to STS. Let
Cnae(i, X)) denote the makespan of the best solution obtained by a given al-
gorithm during trial ¢ on instance X. Let C?,  (X) denote either the optimal
makespan of instance X, if known, or the largest known lower bound on the
optimal makespan. Up-to-date values of C} . (X) can be obtained from Tail-
lard’s web site [38]; we use values reported as of January 1, 2004. Let P(X)
denote the quality of solutions obtained by a given algorithm on instance X;
P(X) represents either the best or mean makespan observed over 10 trials,
depending on the context. Algorithm performance on instance X is quantified
as the percent excess RE(X):W %100 of P(X) relative to C},,.(X).
We then respectively define b-RE(X) and m-RE(X) as the value of RE(X)
computed using the best and mean makespans observed over the 10 trials. Fi-

nally, for each problem group, we let b-MRE and m-MRE respectively denote
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Table 2
Performance of core metaheuristics on Taillard’s benchmark instances.

Problem RMC 1IJAR STS -TSAB PEZ BAL*
Group b-MRE m-MRE b-MRE m-MRE b-MRE m-MRE

ta01-10 0.06 0.15 0.12 0.22 0.09 0.18 0.11  0.45 0.16
tall-20 2.75 2.93 291 3.13 2.94 3.13 2.81  3.47 2.81
ta21-30 5.79 5.94 6.05 6.27 5.87 6.04 5.68  6.52 6.10
ta31-40 0.88 1.01 0.96 1.09 0.87 1.00 0.78 1.92 0.80
ta41-50 4.79 5.09 5.09 5.37 4.85 5.07 4.7  6.04 5.20

the mean b-RE(X) and m-RE(X) observed across the member instances X.

The results for our three algorithms are shown in Table 2. We additionally cite
the original performance statistics reported for (1) i-TSAB [7], (2) Pezzella
and Merelli’s tabu search algorithm [39], and (3) Balas and Vazacopoulos’
guided local search algorithm [40]. Together, these algorithms dominate all
others reported in the literature to date [7]. As indicated in Section 2, the i-
TSAB statistics were obtained using individual trials. For ta21-ta50, results
were reported after 50 million iterations; for ta01-tal10 and tal1-ta20, results
were reported after 5 and 20 million iterations, respectively. The statistics for
Pezzella and Merelli’s algorithm, denoted PEZ, are based on individual trials.
Results for Balas and Vazacopoulos’ algorithm, denoted BAL*, are based on
the best solutions obtained over a wide range of trials and parameter settings.
Statistics for these three algorithms are taken directly from [7]. We make no
attempt to compare the run-times expended to obtain results for i-TSAB rel-
ative to PEZ and BAL*; results for the latter two algorithms are included
simply for purposes of qualitative comparison. However, as indicated previ-
ously, the computational effort required for both our algorithms and i-TSAB
are directly comparable.

We first consider the performance of STS relative to [JAR and RMC. Dis-
counting a few exceptional instances, STS consistently outperforms IJAR in
terms of both b-MRE and m-MRE. However, the difference is typically mini-
mal, and is only 0.24 in the worst case. Similar results hold when comparing
RMC and STS, although here the roles are reversed: RMC consistently outper-
forms STS. As with IJAR versus STS, the difference is typically minimal and
is only 0.19 in the worst case. Overall, the results indicate that tabu search is
not inherently superior to other metaheuristics for the JSP: straightforward
implementations of iterated local search and Monte Carlo sampling provide
quantitatively similar performance for the same computational effort.

Next, we compare the performance of STS with that of i-TSAB. STS is very
similar to the core tabu search component found in -TSAB. By contrasting
the performance of STS and i-TSAB, we approximately control for the impact
of long-term memory on the performance of --TSAB. The results reported in
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Table 3
The number of problem instances for which STS fails to outperform IJAR and RMC.
LJAR RMC
Problem  @50M iters @250M iters @50M iters @250M iters

Group

ta01-10 9 10 10 10
tall-20 7 9 9 10
ta21-30 4 10 10 10
ta31-40 4 10 9 10
ta41-50 2 9 8 10

Table 2 indicate that i-TSAB consistently outperforms the m-MRE obtained
by simple N5-based tabu search, with a worst-case difference of 0.37. Recall
that the computational effort for the two algorithms is equivalent (at 50 million
iterations apiece) for the largest three problem groups, while i--TSAB uses far
fewer iterations to achieve stronger results for the smallest two problem groups.
The fact that i-TSAB outperforms ST'S is not unexpected, given the extensive
empirical evidence regarding the benefits of long-term memory [1]. However,
it is surprising that tabu search can yield such strong performance without
long-term memory.

Finally, we contrast the performance of our algorithms with that of PEZ and
BAL*, the two closest competitors to i-TSAB. All three algorithms outperform
PEZ in terms of m-MRE. Both STS and RMC are competitive with BAL* in
terms of their m-MRE, and frequently outperform BAL* in terms of b-MRE.
Although the run-times are not directly comparable, the results do reinforce
our previous observation that simple metaheuristics based on the N5 operator
can yield exceptionally strong performance.

4.4 Results: Quantitative Analysis

We now subject the hypothesis that STS offers no distinct advantage over
either IJAR or RMC to statistical verification, via a series of non-parametric,
two-sample, unpaired Wilcoxon tests.® Our null hypothesis posits that STS
yields no better solutions than those obtained by either IJAR or RMC; the
alternative hypothesis states that STS outperforms either IJAR or RMC. In
the columns of Table 3 labeled “@50M iters”, we report the number of in-
stances in each problem group for which we fail to reject the null hypothesis
at p < 0.05 under the Wilcoxon test, given the computational equivalent of
50 million iterations of STS (i.e., using the multipliers specified in Table 1).

> All Wilcoxon tests are performed using the exact Wilcoxon test found in the
exactRankTests library of the freely available R statistical software package. All
tests are one-sided.
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STS provides statistically significant performance improvements over RMC
on only 4 of the 50 instances. In contrast, STS holds a statistically significant
edge over IJAR on most of the larger problem instances.

The imposition of hard limits on the number of iterations allocated to algo-
rithmic trials naturally raises the question of whether a competing algorithm
might achieve equal performance with modest increases in computational ef-
fort. To address this issue, we re-consider those instance/algorithm pairs in
Table 3 for which STS provided better performance at p < 0.05. For each such
combination, we execute the corresponding algorithm on the given problem
instance for an equivalent of 250 million iterations of STS, determined using
the multipliers shown in Table 1. We then compute the p-values relative to
our original null hypothesis, substituting the solutions obtained during the
extended runs for their original values, when performed. The results are re-
ported in Table 3 under the columns labeled “@250M iters”. For all but two of
the instances, a five-fold increase in computational effort achieves statistically
insignificant differences in performance of IJAR and RMC relative to STS.

Recall that the 50 million factor derives from our original experimental allo-
cation to runs of STS, which in turn was taken to mirror the computational
effort required to achieve reported results for --TSAB. Although somewhat ar-
bitrary, we selected a multiplicative factor of five to generate the results shown
in Table 3 for the following reason. In practice, implementation details and
parameter settings necessarily impact the effectiveness of any given algorithm.
Thus, we argue that if the performance of two algorithms is statistically indis-
tinguishable given similar computational effort (e.g., within a factor of five),
then there is little justification by which to base any claim of superiority of one
algorithm over the other. Further, this mode of analysis allows us to directly
quantify, or at least bound, the relative effectiveness of different metaheuristics
for the JSP in terms of the computational effort required to achieve a given
performance target.

The historical dominance of tabu search algorithms for the JSP, e.g., as doc-
umented in [6] and [41], would seem to provide confirmatory evidence for the
hypothesis that tabu search holds an inherent advantage over other meta-
heuristics for the JSP. However, our results conclusively establish that this
is in fact not the case: iterated local search and Monte Carlo sampling can
provide equivalent performance. More specifically, both RMC and IJAR yield
performance that is statistically equivalent to STS given a ratio of no more
than 5:1 in terms of the computational effort required. Further, in the case
of RMC, performance is almost always statistically indistinguishable given
equivalent computational effort. At worst, all three algorithms are within a
small constant factor of one another in terms of mean performance. Finally,
due to our experimental objectives, we have avoided any discussion of the fre-
quency with which RMC and IJAR outperform STS; rather, we observe that
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such differences are often statistically significant, particularly for RMC.

5 A Framework for Analyzing Intensification and Diversification

We now consider the impact of long-term memory mechanisms on the perfor-
mance of core metaheuristics for the JSP. To facilitate this new analysis, we
introduce a general algorithmic framework for integrating intensification and
diversification - two prominent features of i-TSAB - into each of the algorithms
analyzed in Section 4. The framework is denoted IDMF for Intensification-
Diversification Metaheuristics Framework.

IDMF is expressed in terms of a variant of the CMF framework, which in turn
assumes the existence of a core metaheuristic T. The variant, denoted CMF’, is
identical to CMF with the exception of the initial solution and the termination
criterion. CMF" is designed to intensify search in the region near a pre-specified
solution s;,;. Search executes for X iterations of the metaheuristic T after
each update of the best-so-far solution s* (specific to a given intensification),
including the initial assignment. Initially, X = X,. After each subsequent
update of s*, X = X,. The mechanism, borrowed directly from TSAB, allows
search to continue as long as improvements to s* are being located. Typically,
X, > X,, allowing search to initially proceed for an extended period without
a change in s*. As in -TSAB, both X, and X, are user-specified parameters;
in practice, particular values are tied to one or more problem groups.

Mirroring i-TSAB, IDMF proceeds in two phases. In the first phase, CMF’ is
applied to random local optima (see Section 3.2), yielding the initial elements
of a pool of elite solutions E. The first phases of IDMF and i-TSAB differ in
three key respects. First, intensification and diversification are absent in the
initial phase of IDMF'. In contrast, i-TSAB uses a combination of TSAB and
path relinking to generate the initial elements of F. Second, the initial elite
solutions in IDMF are generated by applying CMF’ to relatively poor-quality
solutions. In -TSAB, the initial elite solutions are generated by applying
TSAB to either the solution resulting from Werner and Winkler’s heuristic or
solutions obtained via path relinking between extant elite solutions. Third, in
IDMF the e € E are generated independently, while in i-TSAB they are linked
via the process described in Section 2. As a result of these differences, the
initial elite solutions under IDMF generally possess much higher makespans
than those of -TSAB.

The second phase of IDMF consists of a series of iterations in which intensi-
fication and diversification procedures are applied to the solutions in E with
the respective probabilities p; and py at each iteration, subject to p; +ps = 1.
Under intensification, CMF”’ is initiated from a random elite solution x € FE.
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If Choae(s*) < Chuae(), then the resulting s* replaces x in E. Under diversifi-
cation, two distinct elite solutions z,y € F are selected at random. Nowicki
and Smutnicki’s NIS path relinking procedure [7] is then used to generate a
solution z roughly equi-distant in terms of disjunctive graph distance [22] from
both x and y, and CMF” is initiated from z. If Cu0(s*) < Cpae(x), then the
resulting s* replaces x in E. IDMF terminates once the total CMF’ and NIS
iterations exceeds the limit MaxIters. For the parameter settings we consider,
the relative ratio of CMF’ iterations to NIS iterations is always greater than
100:1. Consequently, although NIS is based on the N1 move operator, runs of
CMF and IDMF are comparable given identical values of MaxIter.

Relative to i-TSAB, we have completely re-structured how and when intensifi-
cation and diversification are performed, and have parameterized the relative
frequency with which they are applied. In contrast to IDMF, intensification in
1-TSAB always follows diversification, and intensification is never re-applied
to the solutions in E. Further, because it is expressed via TSAB — which itself
maintains a pool of elite solutions — intensification is applied in -TSAB with
much greater frequency than diversification. Finally, --TSAB always applies
the NIS path relinking procedure to the best elite solution e* € F and the
solution e € F that is maximally distant from e*.

IDMF allows us to analyze the impact of long-term memory on the perfor-
mance of each of the core metaheuristics considered in Section 4. The same
functionality could also be achieved via a direct parameterization of i-TSAB.
However, IDMF uniquely enables us to answer two additional research ques-
tions: (1) What is the relative impact of intensification and diversification on
metaheuristic performance and (2) Is the full complexity of i-TSAB actually
required to achieve state-of-the-art performance levels, or is there a small sub-
set of key algorithmic features that yields equivalent performance? We answer
the first question later in Section 7. The second question is answered in con-
junction with our analysis of long-term memory on metaheuristic performance,
described next in Section 6.

6 Experiment 2: The Impact of Long-Term Memory

We now consider the performance of the core metaheuristics analyzed in Sec-
tion 3 when hybridized with IDMF'; we denote the resulting algorithms by
1-STS, -IJAR, and i-RMC. Our objective to answer two open, related ques-
tions regarding the behavior metaheuristics for the JSP: (1) Can the long-term
memory mechanisms commonly associated with tabu search equally improve
the performance of other core metaheuristics? and (2) Can such “augmented”
metaheuristics also achieve state-of-the-art performance levels? Additionally,
we quantify the magnitude of the performance improvement conferred by long-
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term memory and identify those key components of i-TSAB that enable it to
achieve state-of-the-art status.

6.1 IDMF-Specific Parameter Settings

We generally borrow the methodology and parameter settings described in
Section 4. Due to both the strong similarities between IDMF and i-TSAB and
the availability of tuned values of -TSAB parameters, we directly borrow the
values reported by Nowicki and Smutnicki [7] where there are direct analogs
between i-TSAB and IDMF. In all trials, we fix |E| = 8. For i-STS, the
search duration parameters X, and X, under 15 x 15 benchmark instances
are set to X,=20,000 and X,=4,000; for larger instances, X,=40,000 and
Xp,=7,000. The X, (X,) for i-IJAR and -RMC are defined such that the
computational effort is equivalent to X, (X;) iterations under i-STS, i.e., the
values are computed using the multipliers shown in Table 1. Lacking any
evidence to favor one mechanism over the other, we set the intensification and
diversification probabilities as p; = py = 0.5. Finally, the “maxV” parameter
associated with the NIS path relinking procedure (see [7]) is set to 0.5. We
made no attempt to tune the values of |F|, X,, or X}, for specific algorithms,
due to the computation cost of performing additional experiments and the
fact that these parameters are known to interact [37].

6.2 Results: Core versus Augmented Metaheuristics

Based on the results presented in Table 4, we hypothesize that long-term
memory mechanisms will yield significant and equal improvements in the per-
formance of the core STS, IJAR, and RMC metaheuristics. To test this hy-
pothesis, we compare the performance of each core metaheuristic with that
of its augmented counterpart. Table 4 records both the difference in m-MRE
between the augmented and core metaheuristics (specifically the m-MRE of
the core metaheuristic minus the m-MRE of the augmented metaheuristic)
and the number of instances in each problem group for which we fail to re-
ject the null hypothesis of equivalent performance between the core and aug-
mented metaheuristics at p < 0.05; the alternative hypothesis is that the
augmented metaheuristic outperforms the core metaheuristic. The data in-
dicates that in absolute terms, long-term memory improves performance of
each core metaheuristic. Further, the difference is frequently statistically sig-
nificant, particularly in the more difficult problem groups where there is more
room for improvement relative to either optimal makespans or best-known
upper bounds.

There is some evidence to suggest that the benefit of long-term memory is
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Table 4
Performance differences between core metaheuristics versus those augmented with
long-term memory.

RMC vs. i-RMC IJAR vs. t-1JAR STS vs. -STS
Problem  Diff. in # Diff. in # Diff. in #
Group m-MRE  Significant m-MRE  Significant m-MRE  Significant
ta01-10 0.03 5 0.13 3 0.06 2
tall-20 0.19 8 0.14 5 0.34 8
ta21-30 0.03 9 0.42 6 0.25 8
ta31-40 0.06 5 0.08 2 0.17 6
ta41-50 0.19 9 0.42 6 0.30 8

not identical across the different metaheuristics. Recall from Table 2 that
RMC and STS yield near-equivalent m-MRE on the 30 x 15 and 30 x 20
problem groups. Yet, long-term memory yields larger reductions in the m-
MRE of STS than RMC, and minimally impacts the performance of RMC
on the 20 x 20 instances. Further, the largest improvements are observed for
IJAR, e.g., on the 20 x 20 and 30 x 20 problem groups. Despite these particular
observations, however, it is difficult to draw any general conclusions without
further analysis — in particular without further assessing the optimality of the
parameter settings used in these experiments.

The results presented in Table 4 conclusively demonstrate that long-term
memory significantly improves the performance of a range of core metaheuris-
tics, and provide further indirect evidence in support of the hypothesis that
the core tabu search metaheuristic is not inherently superior to other meta-
heuristics for the JSP. We have also for the first time directly, and under
strict experimental control, quantified the benefit of long-term memory for
metaheuristics for the JSP. Finally, we observe that the magnitude of the
improvements shown in Table 4 are in absolute terms unexpectedly small.
However, as shown below in Section 6.3, these differences are large enough to
distinguish state-of-the-art metaheuristics for the JSP from second-tier com-
petition.

6.3 Augmented Metaheuristics versus i-TSAB: Qualitative Results

We now consider the performance of the augmented metaheuristics in com-
parison to both each other and to i-TSAB. Table 5 reports the b-MRE and
m-MRE of each augmented metaheuristic, in addition to (1) the mean relative
error for solutions obtained by i-TSAB and (2) the mean relative error corre-
sponding to either the best known upper bounds or the optimal makespans. In
the latter two cases, the term “mean relative error” refers to the mean RE(X)
over a problem group (see Section 4.3) for the solutions X returned by i-TSAB
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Table 5
Performance of augmented metaheuristics on Taillard’s benchmark problems.

Problem Best -RMC -IJAR i-STS -TSAB
Group Known b-MRE m-MRE b-MRE m-MRE b-MRE m-MRE

ta01-10 0.0 0.05 0.12 0.04 0.09 0.04 0.12 0.11
tall-20 2.33 2.48 2.74 2.61 2.80 2.58 2.79 2.81
ta21-30 5.45 5.60 5.91 5.62 5.85 5.58 5.79 5.68
ta31-40 0.52 0.71 0.95 0.83 1.01 0.67 0.83 0.78
tad1-50 4.12 4.57 4.90 4.58 4.95 4.35 4.77 4.70

and the best known/optimal solutions, respectively.

We first compare the performance of i-RMC and i-IJAR with that of --STS. In
terms of absolute differences in m-MRE (as opposed to statistically significant
differences, which are discussed below), i-RMC either equals or outperforms
1-STS on the smaller two problem groups, while i-STS outperforms i-RMC
on the larger, more difficult groups. In no case does the difference exceed
0.13. Similarly, -STS outperforms -IJAR on all but the smallest problem
instances, with a worst-case difference of 0.18. Analogous differences exist
in terms of b-MRE performance. Mirroring the results in Table 2, there is
some preliminary evidence to suggest that +-STS may outperform the other
augmented metaheuristics. For now we simply observe that i-STS may hold a
marginal advantage; we rigorously test this hypothesis below in Section 6.4.

Next, we compare the performance of -STS with -TSAB. Recall from Sec-
tion 4.3 that the computational efforts are only directly comparable on the
three larger problem groups. In terms of m-MRE, i-STS only slightly under-
performs i-TSAB; the largest absolute difference is a minimal 0.11. Further,
the difference is only 0.07 on the notoriously difficult 30 x 20 problem group.
In terms of b-MRE, -STS consistently outperforms i-TSAB, with the largest
difference of 0.35 observed on the most difficult problem group. Overall, the
performance of i-TSAB is bracketed by the b-MRE and m-MRE obtained by
1-STS, and generally falls much closer to the latter than the former. Unfor-
tunately, the deterministic nature of i-TSAB prevents us from establishing a
well-defined “mean” performance metric, such that we are unable to assess
whether the observed differences are statistically significant. However, even
given statistically significant differences in performance, i-STS only slightly
underperforms -TSAB.

Finally, we observe that by omitting various features of i-TSAB in IDMF, e.g.,
the more complex mechanism to construct the initial pool of elite solutions, we
implicitly hypothesized that the full complexity of i-TSAB was not required
to achieve its remarkable performance levels. Even given the assumption that
1-TSAB only slightly outperforms ¢-STS, our results indicate that state-of-
the-art performance depends primarily on the presence of two key algorithmic
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Table 6
The number of problem instances for which i-STS fails to statistically outperform
i-IJAR and -RMC.

-IJAR i-RMC

Problem @50M @250M @50M  @250M
Group

ta01-10 9 10 10 10
tall-20 8 10 8 9
ta21-30 6 9 7 10
ta31-40 4 10 7 9
tad1-50 8 10 6 10

features: the N5 operator and a balance of straightforward intensification and
diversification. At best, the omitted features of :-TSAB yield very minimal
gains in performance. We conclude by observing that even the b-MRE achieved
by the augmented metaheuristics — which are generally much lower than the
MRE obtained by a single run of i-TSAB — are still as much as 0.25 higher than
the MRE for the best-known or optimal solutions. Thus, status as “state-of-
the-art” does not guarantee that an algorithm can consistently locate solutions
equivalent to the best known; there remains significant room for improvement
in the design of metaheuristics for the JSP, e.g., through the design of more
advanced long-term memory mechanisms.

6.4 Augmented Metaheuristics versus i- TSAB: Quantitative Analysis

We now revisit the hypothesis that i-STS outperforms — albeit slightly — both -
RMC and i-IJAR. Mirroring the approach taken in Section 4.4, we subject this
hypothesis to statistical verification via a series of non-parametric two-sample
Wilcoxon tests. The null hypothesis posits equivalent performance between
1-STS and either i-RMC or i-IJAR; the alternative hypothesis posits that
1-STS yields better solutions on average that either i-RMC or i-IJAR. The
columns of Table 6 labeled “@50M” report the number of instances in each
problem group for which we fail to reject the null hypothesis at p < 0.05,
given equivalent computational effort. The results indicate that -STS does
yield stronger performance than --RMC and i-IJAR, although only on a small
number of instances. More significant differences are observed for i-IJAR than
1-RMC, which is consistent with the results reported in Table 5.

To bound the efficiency of i-STS relative to the other algorithms, we again ex-
ecute trials of i-RMC and i-IJAR for an equivalent of 250 million iterations of
1-STS. We then compute p-values corresponding to comparisons between the
1-STS trials and the extended-duration i-RMC and i-IJAR trials, where per-
formed; the results are reported in the columns of Table 6 labeled “@250M”.
In all but three cases, the additional computation is sufficient to achieve sta-
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Table 7
Performance of augmented metaheuristics under extended-duration trials.

Instance Best -IJAR -RMC -TSAB
Group Known b-MRE m-MRE b-MRE m-MRE

ta01-10 0.0 0.03 0.07 0.04 0.08 0.11
tall-20 2.33 2.39 2.62 2.52 2.69 2.81
ta21-30 5.45 5.57 5.80 5.59 5.69 5.68
ta31-40 0.52 0.63 0.86 0.72 0.86 0.78
tad1-50 4.12 4.22 4.61 4.34 4.73 4.70

Table 8
New best-known upper bounds for Taillard’s benchmark instances.

Instance  New Upper Bound Old Upper Bound

tal9 1334 1335
ta20 1350 1351
tad7 1774 1778
tadl 2014 2018
tad2 1950 1956
tad6 2019 2021
tad7 1900 1903

tistically indistinguishable performance relative to i-STS. Overall, the results
indicate that the performance of i-RMC and i-IJAR is generally statistically
equivalent to that of -STS given a ratio of no more than 5:1 in terms of the
computational effort required.

In Table 7, we report the b-MRE and m-MRE values resulting from the
extended-duration --RMC and i-IJAR trials. In contrasting these results with
the corresponding entries for i-STS in Table 5, we observe minimal absolute
differences, which is consistent with the results from our statistical analysis. Of
particular note is the remarkable performance, in terms of b-MRE, achieved
by i-RMC; the worst-case deviation from the best known results is only 0.12.
Finally, although our research objective is the analysis of metaheuristics for
the JSP, our experiments have resulted in solutions that improve over the
current best-known upper bound for seven of Taillard’s benchmark instances.
The improved bounds are summarized in Table 8.

Given the potentially large impact of implementation details and parameter
values on performance, we conclude that the performance of the augmented
metaheuristics is roughly equivalent, i.e., no clear winner stands out. Most
importantly, our results demonstrate that long-term memory equally benefits
all of the core metaheuristics we consider, and that all of the augmented
metaheuristics achieve performance that is competitive with i-STS, and by
inference -TSAB. Due to the experimental control, these results also provide
additional evidence that core tabu search is not integral to the performance
of i-TSAB.
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Table 9
Performance of i-STS under various combinations of p; and py.
Pi / Pd
Instance STS  0.00/1.00 0.25/0.75 0.50/0.50 0.75/0.25  1.00/0.00

Group

ta01-10  0.18  0.14 (2)  0.11(3)  0.12(3)  0.09 (3)  0.07 (4)
tall-20 3.13 2.81 (7) 2.79 (8) 2.79 (8) 2.70 (8) 2.79 (8)
ta21-30 6.04 5.83 (7) 5.87 (6) 5.79 (8) 5.80 (8) 5.93 (5)
ta31-40 1.00 0.90 (3) 0.93 (4) 0.83 (6) 0.86 (5) 1.10 (0)
ta41-50 5.07 4.83 (6) 4.79 (7) 4.77 (8) 4.79 (8) 5.49 (0)

7 Experiment 3: Intensification versus Diversification

Our motivation in Section 6 for selecting p; = py = 0.5 was simply that there
is no a priori evidence to suggest that one mechanism should be preferred
over the other. Empirically, equi-probable settings significantly improve the
performance of all the algorithms we consider, and enable i-STS to achieve
performance levels competitive with those of --TSAB. However, this decision
leaves two important questions unresolved: (1) Can different weightings yield
improved performance? and (2) What are the relative benefits of intensification
and diversification? Given the overall focus of our research, we address these
questions in the context of i-STS, although the choice is in principle arbitrary.

Using the experimental methodology and parameter settings described in Sec-
tion 6, we compute m-MRE statistics for --STS under the following p; (see Sec-
tion 5): 0.0, 0.25, 0.75, and 1.0. Table 9 records the results; data for p; = 0.50
and STS are included for reference. We additionally report (in parenthesis) the
number of instances in each problem group for which +-STS under the given
parameter setting outperforms STS at p < 0.05 under a Wilcoxon test; the
null hypothesis posits identical performance, while the alternative hypothesis
posits stronger performance than STS.

Under pure diversification (pg = 1.0), -STS outperforms STS, with absolute
differences in m-MRE ranging from 0.04 to 0.32. The relatively small margins
are reflected in the p-values, which indicate that the difference is statistically
significant for just over half of the benchmark instances. Similar results hold
for i-STS under pure intensification (p; = 1.0) on the three smaller problem
groups. However, performance is actually worse than STS on the largest two
problem groups: intensification alone can degrade the performance of the core
metaheuristic. Overall, the strongest performance is obtained when both p,
and p; are non-zero. The best results on the largest three problem groups are
obtained when p; = py = 0.5, also yielding the largest number of instances
for which the performance differences between i-STS and STS are statistically
significant; similar results are obtained with p; = 0.75 and pg; = 0.25. Overall,
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the results demonstrate that the effect of intensification and diversification
is multiplicative, with the combination yielding stronger performance than
either mechanism in isolation. Further, there is some evidence for a “sweet
spot” near p; = pg = 0.5, i.e., the mechanisms must be applied with near-
identical frequency to achieve maximal performance.

8 Implications and Conclusions

The primary goal of our research was to explicitly identify those components
of Nowicki and Smutnicki’s --TSAB tabu search algorithm that enable it to
achieve state-of-the-art performance levels, and to quantify the overall contri-
bution of each such component. We show that the core metaheuristic, and in
particular tabu search, is not integral to the performance of i-TSAB. Rather, i-
TSAB achieves state-of-the-art performance levels through the use of both the
N5 move operator and a balanced combination of intensification and diversifi-
cation. Viewed from another standpoint, we have shown that state-of-the-art
algorithms for the JSP are, at a very fundamental level, quite simple — leaving
significant room for further advances. For example, more advanced methods
for maintaining pools of elite solutions [42] offer the potential to significantly
improve performance.

Our results emphasize the importance of long-term memory in metaheuris-
tic performance, by demonstrating that long-term memory significantly and
equally improves the performance of a range of core metaheuristics. Tradi-
tionally, long-term memory mechanisms have been associated primarily with
the tabu search metaheuristic. However, given that the problem of escaping
local optima is “solved”, our results strongly suggest that a more integrative
view of the role of long-term memory in metaheuristic design is required. In
particular, we argue that metaheuristics should only be differentiated in terms
of how they use long-term memory to guide search.

We conclude by observing that through a relatively simple series of carefully
designed experiments, we are able to yield significant insights into the behavior
of metaheuristics for the JSP. Much of the research on metaheuristics focuses
on the development of new techniques, rather than developing a thorough un-
derstanding of the behavior of existing algorithms. As a result, misconceptions
and unproven assertions regarding various metaheuristics are found through-
out the literature. Yet, straightforward analysis can — if carefully performed
— often resolve these issues, and place the field of metaheuristics on a more
scientific foundation.
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